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SOUND PROPAGATION IN RAREFIED GASES

ABSTRACT

A study of sound propagation in rarefied gases is described with
particular emphasis on the propagation in the geometrical relaxa-
tion regime where the sound carrying molecules do not suffer
intermolecular collisions during the flight from the transmitter
to the receiver. The propagation is characterized by the atten-
uation and the phase parameters. The dependence of these
dispersion parameters on the separation between the transducers,
the velocity distripbution of the molecules subsequent to their
interaction with the transmitter surface and the boundary condi-
tions describing molecular-surface interactions is ascertained in
terms of a semi-phenomenological theory. Experiments for measuring
the dispersion parameters are described and the results are dis-
cussed and compared with theory. A theory and an experiment for
determining surface accommodation coefficients using sound propa-
gation in rarefied gas are outlined. Finally a theoretical model
is constructed that leads to a reasonable qualitative and quanti-
tative description of sound propagation in rarefied gases.
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I. INTRODUCTION

The propagation of sound in gases, especially in rarefied gases,
offers a method for studying gas dynamics on a molecular basis.

From the theoretical point of view this study is particularly
attractive since the amplitudes which define the sound field are
usually small compared with the amplitudes which define the basic
motion of the molecules. Thus, one 1s able to linearize the kinetic
equation of motion. Of particular importance is the linearization
of the Boltzmann equation

b+t e - spintn)

+ Tfntx = 0,600} (1.1)

Imm is the source term arising from intermolecular interactions,

Ims is the source term arising from molecular-surface interaction,
and € is the molecular velocity vector. The function h represents
the ;Erturbation term in the distribution function which 1s caused

by the superposition of the sound fileld.

A considerable volume of literaturel/ exists which deals with
methods and techniques for obtaining solutions to the linearized
Boltzmann equation. These analyses are confined chiefly to the

“ur field where all memory of surface interaction has been de-
stroyed by intermolecular encounters. One considers a source

term in the Boltzmann equation, devoid of any molecular-surface
interaction contribution (gns = 0). The resulcs which are obtained
indicate that measurements of sound in the far field are sensitive
to some of the properties of intermolecular collisions.
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The analysis cf sound propagation sufficiently near a transmitter
surface such that molecules which carry the sound from that sur-
face arrive at the observation point without undergolng inter-
molecular collisions can also be performed. In this analysis the
intemolecular encounters may be ignored (Imm = 0). Consequently
one expects the solution to the equation of motion to be dominated
by molecular-surface interaction parameters. An experimental
study of molecular-surface interaction by acoustical means is thus
suggested.

In considering the kind of information whicii one may reasonably
expect to obtain from experiments, it is convenient to consider
the properties of sound propagation in three distinct regimes of
pressure. These are depicted in Fig. 1 and are discussed briefly
below,

The first regime may be termed the Classical Regime. Here the
emphasis 1is on quantities which vary little over the mean free
path or the mean time of intermolecular collisions. Moreover,
molecular-surface effects are quite negligible even at short dis-
tances away from the transmitter. Indeed the theoretical expres-
sions which adequately describe sound propagation in the classical
regime do not contain detailed kinetic parameters. Nevertheless,
the use of the kinetic theory to derive the sound propagation in
this regime serves as a limiting criterion for the validity of

Eq. (1.1) and may also provide a more fundamental understanding

of the nature of sound.

There exists a range of parameters which we designate the Frequency
Relaxation Regime. Here the frequency of intermolecular collisions,
fc, is comparable to or smaller than the frequency f of the sound
field (f > fc), and the sound field is observed at large distances
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from the transmitter surface., Then sufficient intemolecular
encounters have taken place in the space between the transmitter
and the point of observation to ensure that the observed molecules
possess no recollection of surface-molecular interactions 8o that
details can be examined entirely on the basis of intermolecular
collisions,

In the Geometrical Relaxation Regime the molecules are assumed to
traverse the path from the transmitter to the receiver control
surface essentially without undergoing any intermolecular collisions.
In this case, one sets the source term Imm of Eq. (1.1) zero. The
solution of the Boltzmann equation then depends primarily on the
molecular-surface interaction. Consequently, an examination of
sound propagation in the geometrical relaxation regime could lead

to information regarding such interactions.

Our chief concern is with the third regime and the study of molecu-
lar-surface interactions. The research reported here is mainly
exploratory in nature in both 1ts experimental and theoretical
aspects. Nevertheless some of the findings and results contribute
in some measure to the understanding of the phenomenon of the
propagation of collective ordered motion in a rarefied gas.
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II. DESCRIPTION OF THE MODEL FOR DISPERSION STUDIES

To avoid complications in the interpretations of both the experi-
mental and the theoretical results, it is expedient to impose
certain constraints on the experimental and theoretical models.

1) The gas molecules only possess translational degrees
of freedom and the gas is composed of a "single com-
ponent."

2) The surfaces of the transmitter and a test surface
vhere the observations of the sound field are carried
out (e.g., hypothetical control surfaces or receivers)
are plane and varallel to each other,

3) The transmitter surface vibrates uniformly and without
distortion.

4) The transmitter 1s large enough that end effects are
negligible.

5) Vibration of a single frequency is superposed on the
basic motion of the molecules.

6) The amplitudes which define the sound field are small
compared with the amplitudes which define the basic

motion of the molecules,

We shall first dwell on the theoretical aspect of the phenomenon.

-4~
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/
II1I. DESCRIPTION OF DISPERSION BY THE ATTENUAT1ON

AND PHASE (a AND B)

Consideration of the model defined above permits one to assume a
solution to the equation of motion of the form

F(x,6,t) = FO(§) + h(x,88) (3.1)

where the function h is small in the mean (i.e. the ratio of a
velocity moment in h to one in F° is very much less than unity).

In Eq. (3.1)

X = position of a control surface measured in
the direction normal to its plane,

€ = molecular velocity vector,
t = time of observation at the control surface,
F°(£) = solution to the equation of motion in the

absence of sound.

The equation of motion is then the linearized Roltzmann equation
which is stated formally in Eq. (1.1).

The sound pressure at the control surface, p(x,t) is the normal
flux of alternating momentum at the surface

p(x,t) = m | d& h(x,3,t)(5,4)° (3.2)
where

the mass of each molecule,

3
n

ﬁ = a unit vector in the x-direction.

-5-
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The dispersive properties of the sound field can be defined by the
attenuation per unit distance, a and the wave number B, for waves
at angular frequency @, That there can be a well defined frequency
is evident from the separability of Eq. (1.1); and such harmonic
disturbances can be induced by imposing an oscillating boundary

at the transmitter. The momentum flux (pressure) at any space
point thus is of the form p(x,t) = p(x) exp(-iwt). However no
assumption has been made that permits one to assume that p(x) is

& plane wave and therefore one must obtain the mathematical defini-
tion of a and 8 from an analysis of the measurement process for
determining attenuation and phase. One measures the pressure at
neighboring space points in the vicinity of x, obtains the difference
and normalizes by the interval between the points and the pressure
itself. Thus one obtains, for closely neighboring points separated
by Ax,

X + AX) - X - Op(x
LX) o (o - 1p) = 2RAKL (3.3)

Clearly a and B are, in general, functions of x and therefore
the sound pressure partial wave of frequency w at the point x is
to be expressed in terms of the sound pressure at x' by the relation

. X
p(x) = p(x') exp - | ds(a(s) - 18(s)] . (3.4)

This concept of a generalized attenuation and phase which are not
only frequency but also space dependent is fundamental to the subse-
qQuent discussion.

Since p(x,t) is a moment over h(x,é,t) we must first derive an
expression for h(x,£,t) in terms of the molecular surface interaction,

6=



owmd oemd o
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IV, DERIVATION OF A GENERAL SOLUTION

A. Formal Solution

Instead of attempting a direct solution of Eq. (1.1) by assuming
a suitable form for the source term, we set the source term zero
and make that solution subject to the boundary conditions which
the source term repre¢sents,

Vie denote the distribution function of the molecules subsequent
to their interaction with the vibrating transmitter surface by G_
and the normalized distribution function of the mclecules subse-
quent to their interaction with the transmitter surface in the
absencec of vibrational motion by g . Ve assume that the incre-
mental velocity, g, and density, p?n, which 1is imposed on the
molecules by the surface vibration are linearly superposed on

the molecular motion in the absence of vibrations. The parameter
p? i1s the density in the absence of vibrational motion. We denote
the distribution function of the incremental velocities by q. G_
is a joint distribution function in é} and g, and can be written

in product form because 5' and o are independent. Thus,

mo_(x = 0,5,0,6') = p%{1 + () fa(0)e_(§' - Q)U(E}) . (4.1)

Here 4' = molecular velocity vector,

[
f dg q(O) = 1’ (u.2)

J die_(8) =1, (4.3)
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and

0 li <0

u(éy) = { L g0 (4.4)

We assume that |g|/c, and n are small compared with unity and ex-

pand g_ in Taylor's series retaining only the first order terms in
o

o

(8 -9) =8 (8) -0 Fe(t) . (4.5)

Thus, to first order in thes perturbation
na! = m [ aag =6 {g_(6) + 66 (£")

-5 gretnfuey (4.6)

-

where

E-fdg_g_q(g) andﬁ-fdg.n q(g) .

We introduce a spatial and temporal propagator T to describe the
development in time of the distribution function G' as x goes
from zero at the transmitter to its value at the control surface,
Pormally we denote this development by the equation
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F(x,8,) = [ atr [ a8 ai(x = 0, £,3, t')
d T(x = 0,5_': t'lx.vs.:t) . (u°7)

The determination of the functional form of T 1is equivalent to
solving the Boltzmann equation with corresponding constraints.
This usually would present Jjust as many difficulties as the direct
solution of Eq. (1.1). However, in the geometrical relaxation
regime the propagator assumes the simple form

T=0(t -t +g) 88 -6) , (4.8)
U A

where 0 is Dirac's delta function and © = 6x6y°z‘

From Eqs. (4.6), (4.7) and (4.8) one obtains

P e (p2/m) {6.(8) + At - &) & (E)

- (¢ - 5’5;) a s_(g)} u(e,)

and

ne (p%m) {Re. - 3 ¢ R e ful) . (4.9)

Note that h as given by Eq. (4.9) satisfies the Boltzmann equation
with both I and I . equal to zero [see Eq. (1.1)]. The function
h satisfies the boundary conditions by virtue of its derivation
from Eq. (4.7). To proceed further one must examine these boundary
conditions in some detail.
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B. Boundary Conditions (Molecular-Surface Interaction

at the Transmitter)

Assume that the distribution function of the incident molecules
on the surface of the transmitter is (p)/m)g, (§)U(-€,) [P 1s
independent of time in absence of vibrational motion). Consider
the transformation from coordinates fixed in space to coordinates
fixed in the vibrating surface of the transmitter, In this co-
ordinate system the distribution function for the incident and
emerging molecules is_given by (p:/h)g+(€ +.E)U('€x) and (p%/m)
(1 +1)g ?ﬁ - (g - u) (€ ) respectively. The velocity ik 1is the
velocity of the surrace of the transmitter (note that b o= ﬁu)
Now suppose that the surface does not constitute a source (or a
sink) of molecules. One can then equate the incident and
reflected fluxes and obtain, after some reduction, the conserva-
tion equations

n = a(u/c,) and p2c_ = plc, (4.10)
where
a=c l(v/ee) - (v -1)/2c_], (4.11)
-fdf. Sx8y U(25y) (4.12)
5, =T, (4.13)
t
w e avk(elue) (4.14)

K(t'|t) = the probability that a molecule that strikes
the surface at time t' emerges at time t,

i10=
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Here use has been made of the requirement that g (5) —e 0

as || —e = and we have also made the reasonable assumption that
v aﬁa'v are constants in time. Note that v and ¥ depend on the
type of molecular-surface interaction. The parameter v 1is re-
lated primarily to the "sitting time" of the molecules on the
surface of the transmitter. This surface relaxation time can

be sensed by the sound field when the average sitting time is
comparable to or longer than the period of the sound oscillation.
The parameter ¥ is related primarily to the efficilency with which
the surface impresses its vibrational moction on to the molecules,

The exchange of the normal component of momentum between molecules
and surfaces 1s of great interest to aerodynamicists and may be

stated in terms of the ratio, BT, of reflected to incident nomal
momentum flux, In the absence of surface vibration this ratio is

B2 = cZc /ete_ . (4.15)

In terms of properties of the sound field the reflector ratio is

B2 = (v - 1) + (ac/2c,c ) (4.16)
where
o2 [ at e300, (4.17)

and a, c, and ¥ are defined in Eqs. (4.11), (4.12) and (4.13)

respectively. Equation (4.16) is a statement that acoustical
measurements could be used to ascertain reflective properties
of molecular-surface systems,

-]1]l-
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C. Classification of Surface Interactions

We find it convenient to consider the molecular-surface interaction
in terms of three special processes by which the general case may
be approximated. Such consideration serves to elucidate the physi-
cal interpretation of the quantities v and Y. These three inter-
action processes are outlined below:

L. Specular Reflection

Each molecule is assumed to interact with the surface instantly
and in such a way that che sign of its compniaent of momentum in
the x-direction is reversed. This interaction process conserves
energy and momentum. It is easy to show that in this case (viz.
Eq. (4.1) et seq.)

Yy=2and v =1

2. Diffuse Elastic Reflection

Each molecule is assumed to interact instantly with the surface
such that the incident energy is conserved but not the momentum.
It is further assumed that the scattering obeys the cosine law
of reflection. In this case one can show that

Y = g and v =1 .,

3. Diffuse Inelastic Reflection

The molecules are considered adsorbed by the surface and to come
to thermal equilibrium with it before bolling off in a random
fashion. That is, it is assumed that neither the momentum nor
the energy are conserved, and that the distribution of the

-12-
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molecules subsequent to the interaction is consistent with the
assumption that the gas 1s in thermal equilibrium with Cthc surfacc,

In this case there are two regimes, If the function K(t'|t)
is such that most of the contribution to the integral n

Eq. (4.14) comes from a region where t - t' < 7/2%2, then

v = 1; in the other extreme v = 0. For diffuse inelastic re-
flection v = 1,

When more complicated molecular-surface interactions can be
approximated by such elementary processes, the contribution
from each basic process is computed separately and added to
give the total effect.
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V. DETERMINATION OF THE TRANSMISSION OF SOUND IN
THE GEOMETRICAL RELAXATION REGIME

The equation of sound propagation in the geometrical relaxation
regime can be determined using the semi-phenomenological parameters
introduced in the previous section. Substituting Egs. (4.9) and
(4.10) in Eq. (3.2) and making straightforward manipulations, we
obtain

) agx
o, .2 2 X -
p(s) = P_HoCh . dr r {ag-(r) - y-gF-}'exp(is/p) , (5.1)

where
S = J’x/cm ’ (5.2)

r=£/c . (5.3)

Note that Eq. (5.1) is dependent on the molecular-surface inter-
actions in a complex way. There are cases, however, for which it
is possible to assume the analytical form of gy and g_; for such
cases, v and Y could be examined by acoustical means. Conversely,
if v and ¥ could be estimated by an independent method, the distri-
bution function, g_, could be studied by acoustical means,.

Equation (5.1) 1s suggestive of *the work of otiaer investigations.
It differs from the equation derived by Meyer and Sesslqu/but

for s >> 1 and for a Maxwellian distribution it yields the same
dispersiqn equations., Our results agree with an equation derived
by Kahnz/ when the following restrictions are imposed on Eq. (5.1):
the distribution functions arc Maxwellian; v =0 and v =1 (i.e.,
diffuse inelastic reflection and t - t' of Eq., (4.14) 1s, on the
average, very much larger than w/2w),

=
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VI. PHYSICAL INTERPRETATION OF SOUND DISPERSION
IN THE GEOMETRICAL RELAXATION REGIME

From Eq. (5.1) it is evident that the expression for the sound
pressure has the general form

p(s) = N\/; dr A(r) exp (is/r) , (6.1)

in which N is independent of s. It is through a careful analysis
of the significance of the various contributions to the integral
in this expression that we uncover the mechanism whereby the
sound wave suffers dispersion in propagation,

The integral has an appearance very similar to the Fourier integral
and as such can be thought of as being a superposition of weighted
plane waves. A(r) would be the weighting function and the phase

term exp is/r a plane wave of wave number % at dimensionless posi-

tion s. The weighting function A(r) 1s the product of the molecular
velocity distribution function and a factor which brings the terms
N A(r) dr to the dimension of momentum flux, i.e., pressure. Thus
the partial cound pressure (the sound pressure coatribution from

an infinitesimal velocity range) is given by

dp(s) = NA(r)exp(is/r)dr . (6.2)
From the above discussion and Eq. (6.2) one can conclude that
were there but one velocity there would be no dispersion and

the wave number would be inversely proportional to that one
velocity.

-15-
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Extrapolation leads us to state that for a highly peaked flux
distribution there would be little attenuation and dispersion.

In nature, however, the fluid molecules have a rather broad
velocity distribution. For equilibrium and near equilibrium

the weighting function A(r) has the general form depicted in

Pig. 2a. There i1s a maximum value of A when r is of the order

of unity. Consider now the influence that such a broad weighting
function has on a superposition of the partial waves of Eq. (6.2).
In the superposition the partial waves can interfere destructively
or constructively. The kind of interference contributed in the
various ranges of the variable r in the integration can be dis-
cussed by considering s/r in the ranges s/r > 1 and s/r < 1.

The behavior of the phase term as a function of the variables r
and s 1s depicted in Figs. 2b, ¢ and d. For values of s/r large
compared with unity the phase term is an oscillatory function of
the variable r; the slower molecules (s > r) arrive at the re-
ceiver with widely varying phases. The partial sound pressures
associated with these molecules interfere with one another
destructively (phase mixing). Thus the slower molecules do not
contribute to the sound pressure. The faster molecules (s < r)
arrive at the receiver with essentially the same phase. This
preservation of coherence by the faster molecules constitutes

the sound field at the receiver. The inability of the slower
molecules to transmit sound 1s directly responsible for the dis-
persive properties of sound. Thus, what constitutes slow or fast
molecules is determined by whether the molecules possess velocity
components, r smaller or greater than s, respectively. To account
for the dispersive properties of sound in more detail it is there-
fore convenient to consider the problem in three ranges of the
parameter s, They are s << 1, 8 >> 1 and s = 1 (see Fig. 2).

-16-
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In order to introduce some quantitative data in the following
discussion reference 1is made to the example of a Maxwellian
distribution. That 1is, we assume that both By and g_ are
Maxwellian distributions. Then trom the foregoing equations we
obtain

N=p_ u, cm/f#, (6.3)
2 2
A(r) = r“(a + 2yr) exp (-r°) , (6.4)
where
W=up, exp (-10t),
(o] (o}
Py =P, =P

and
a=vm(v+1-%) .

A. Dispersion in the Range s << 1; Figs. 2a and 2b

In this range only the very slow molecules do not contribute

to the sound transmission. Since their associated weighting
functions are small they do not impalr greatly the total transfer
of coherence from the transmitter to the receiver. Thus one would
expect the attenuation parameter a to be small and to increase
monotonically with increase in s. The phase parameter B (wave
number), which is inversely proportional to the speed of sound,
is not greatly affected in this range by variation in s. As s
increases a corresponding, but slight, decrease in £ is expected
since 1t is left to the faster molecules to transmit the sound
(coherence).

=T
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We cite the results which are computed by solving Eq. (3.4) using
Eq. (6.1) and the Maxwellian quantities given in Eqs. (6.3) and
(6.4)

(¢ - 16)/’6o = sa [1 + a132 + ...)
- 1b [1 4+ b,5° + ...] (6.5)
O 1 LI ] ) .
where
1/2 .
= (-3—) [(a/7 + 4y)(a/T + 2v)
T 2 2
- 2(a +vmy)°)/Nwa + Uy) 3 (6.6)
1/2 ,
= ( 07 (a +vmy)/WNra + by) . (6.7)
Bo = the phase parameter for an ideal gas under
standard condition of temperature and pressure,
al...b1 = constants which depend on v and v,

Note that over reasonable limits on v and ¥ [0 < v < 1 and
1 <7y <2) the value of b, 1is near unity.

The quantitative result, Eq. (6.5), bears out the qualitative
discussion.
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B. Dispersion in the Range s >> 1; Figs, 2a and 2d

In this range only the very fast molecules can varticipate in
transmitting sound. Thus the phase parameter B is small compared
with that in the range s << 1. However, its rate of decrease
with increase in s is expected to be proportionately slow. The
reason is that the weighting function is a monotonically decreas-
ing function of r; thus the molecules which are concentrated in
the vicinity of r ¥ s are those which most influence the trans-
mission. However, the cessation of the oscillation occupies a
relatively wide range in the parameter s/r. Both these effects
combine to resist large changes in B as a function of s. The
attenuation parameter a[N.B. a is a local attenuation variable,
see Eq. (3.3)] follows similar changes with s as does the phase
parameter, that 1is, its value decreases at a proportionately slow
rate with increase in s,

Again we make use of the Maxwellian distribution to obtain
quantitative results for this range. Making use of the method
of steepest descentﬂ/ one obtains

(@ - 18)/By = (V2P {1 - 13y, (6.8)

which is in agreement with the preceding qualitative discusslion,

The dispersion in this range 1is, to first order of approximation,
devoid of molecular-surface interaction parameters. The results,
Eq. (6.8), are given in graphical form in Fir. 3.

C. Dispersion in the Range s = 1; Fige, 2a and Zc

In the range r = 1 the weighting function is relatively large and it
undergoes large variation as a function of r. Thus one would
expect large variation to occur in both the dispersion parameters.
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The attenuation parameter increases as s increases to unity. As s
is increased further, the attenuation reaches a maximum value and
then decreases to an asymptote for s >> 1. The phase parameter
decreases significantly with increase in s only when s becomes
greater than unity. For only then 18 the weighted mean velocity
component of the faster molecules in the direction of propagation
increased.

In this range we were not able to obtain analytical expressions
for p(s) or its derivative with respect to s, therefore, we per-
formed numerical computations. The results are plotted in Fig. 3.
Observe that the dependence of the dispersion on the molecular-
surface interaction parameters is present but not pronounced.

This is unfortunate; it indicates that considerable accuracy in
the measurements of the dispersion of sound is required to obtain
results that can distinguish between the various processes of
surface-molecular interactions,
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VII. EXPERIMENTAL WORKIMNG RANGE

In order to extend the range of the work which has been previously
conducted in this field,glé&é/ as well as to examine new applications
vhere sound nropagation may be useful for studies of rarefied gas
dynamics, we chose to conduct our experiments at lower frequencies#
(2 to 12 kc) and at lower pressures* (as low as 5 x 107 mm Hg).
The lower frequency range has the advantage that sound measurements
can be made in a truly rarefied gas over larger separations,
Measurements over longer distances have the advantages that higher
accuracies can be achieved and that auxiliary equipment can be
chosen without the pains of miniaturization. The challenge to

this approach is whether one can produce high enough signals and
sensitlive enough receivers to achieve measurements with low sig-
nal-to-noise at the lower pressures,

» Greenspané/conducted his measurements at 11 Mc and at rg}atively
high pressures, higher than 1 mm Hg. Meyer and Sessler</con-
ducted their experiments at 100 and 200 kc and at pressures in
excess of 2 x 10-3 mm Hg.
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VIII., THE EXPERIMENTAL SYSTEM FOR STUDIES OF DISPERSION

In this section, we describe briefly the experimental system
which we used to stidy the dispersion of sound in rarefied air,
The system is designed to operate in pressure ranges where the
mean free path of intermolecular collisions 1is longer than the
spacing between the transmitter and receiver.

A, The Vacuum System

For good accuracy and flexibility, it is desirable that the
spacing between the transmitter and receiver be varied over
several centimeters, Separations of the order of 1 cm or more
require working pressures of the order of 10"3 mm Hg or lower,
(In air the mean free path at 1075 mm Hg and 300° K is about
5.5 cm.) Since mechanical pumps cannot achieve these low pres-
sures, it is necessary to use a diffusion pump.

The pumping system, which is of conventional design, is shown in
Fig. 4. The limiting pressure obtained in the test section with
this system was about 3 x 10”° mm Hg.

The transmitter-receiver and the bell jar-base plate systems are
shown in Fig. 5. The sound source (transmitter) is mounted on

a movable vacuum tight rod which can be actuated externally.

With this arrangement, the distance between the sou~ce and recelv-
ing microphone can be varied continuously over a 1 . .ge of 12 cm
while maintaining a constant pressure in the test section.

Two vacuum gauges are incorporated in the system. A thermo-
couple gauge 1is used in the range from 10 mm Hg to 5 x 10™3 mm

Hg and an ionization gauge covers the range from 5 x 10'3 mm Hg to
10'6 mm Hg. We also had available an alphatron gauge with a range
from 10 mm Hg to 1073 mm Hg.
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B, The Electrical and Mechanical System

The microphone is of the electrostatic type (Bruel and Kjaer
Model 4132), A 1l-inch microphone is suspended vertically above
the sound source in a fixed location. It is mounted in such a
way that the electrical connections are through the top of the
bell jar. This arrangement is chosen in order to reduce the
background signals due to electrical stray currents, The polari-
zation voltage of the microphone is set so that no discharge
occurs between membrane and backing plate at the operating pres-

sure.

The sound source is8 an electrostatic transducer with solid
dielectric. The vibrating diaphragm 1s light enough so that
mechanical cross talk between it and the microphone is essentially
eliminated. The vibrating surface extends to about a 5.0 inch
diameter. The output of the sound source has a maximum of 130 db
at atmospheric pressure.

Toe electric. ' diagram of the experimental apparatus is shown in
Fig. 6.

The separation between microphone and transmitter can be varied
automatically, continuously and slowly over a range of about 12 cm.
The initial separation may be set as small as 0.05 cm. The separa-
tion x as a function of time is given by

X =b +d[1 - cos (t/7)] , (8.1)

where b is the initial separation (which can be varied in-
dependently), d = 12,1 cm and T 1S set at about 90 sec-

onds (7 may also be controlled independently). This
particular rate of change of stroke was decided upon because
it is simple to implement and also enables one to
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expand the initial region (t << T) where the attenuation and phase
parameters show definite deviation from the theory in which mul-
tiple reflections are neglected. The disadvantage of this varia-
tion 1s that the records have to be converted to a linear scale.
We have therefore installed mechanical and electrical linear

scale converters which can be 'switched in" when records over
large separations are desired. With these converters operating,
the abscissa of the graphic record is proportional to the distance
travelled by the transmitter. With these devices, it is estimated
chat the spacing can be read to better than 0.1 cm over the entire
range of separation.

The sound pressure level is recorded on a graphic level recorder
and can be read tc within 0.5 db on a 50 db potentiometer. When
a limited range of the sound pressure level is of interest a

10 db potentiometer is used and the accuracy thereby imprcved.
Tte results wh'’ch are reported here were obtained with a 50 db
potentiometer only. Typical records are reproduced in Fig. 7.
The identation in Pig. 7a at about 1 cm is due to an approxi-
mately 10 db change in gain which 1s sometimes necessary to keep
the entire record on a 50 db potentiometer.

The phase is measured with a phasometer which indicates the phase
difference between a direct signal from the driving oscillator
and the signal received at the microphone. The output of the
phasometer 18 fed into the ordinate of a graphic recorder. We
estimate that in most cases the phase could be read to within

10° over a phase change of 360°. A typical record is shown in
Fig. €. The Jumps in the curves (at 2 cm and around 10 cm)

occur when one full meter scale reading (360°) is completed.
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The useful frequency range of the present apparatus extends from

5 ke to about 12 ke, The upper limit is set ty the sensitivity of
the mi:rophone which drops off considerably beyond its resonance
at atout 10 kec. The lower 1limit 13 set by the avallable stroke

of 12 cm. Lower frequencies are useful for studies of multiple
reflections only.
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IX. EXPERIMENTAL RESULTS

All of the many records which were taken (e.g., Figs. 7, 8, and 9)
show that there are two distinct regimes in the behavior of the
amplitude and phase of the transmitted sound. There is the
"initial region" (up to.approximately 1 cm) where the signal
decreases very rapidly and the sign of the phase 1is opposite

to that predicted by the theory. It is only at a separation of
more than 1 cm thet the attenuation and the phase of the signal
follow, at least qualitatively, the theory outlined above.

The region, where multiple reflections can be ruled out (x >> 1 cm),
we term the "far field.  The region between these two extremes

we refer to as the "intermediate region.” Roughly, the inittal
region, the intermediate region and the far field correspond to
regions which are defined by s <K 1, s ¥ 1 and s >> 1 respectively,
where s 18 the normalized separation. We shall now consider each
region separately.

A, The Initial Region

We found that the initial decay with increasing separation is
independent of the pressure down to 5 x 10'5 mm Hg for a gilven
frequency, and up to a separation of about 1 cm. A slight varia-
tion of the initial decay with variation in frequency is observed.
We conclude that for small separations (< 1 cm) and at a given
frequency the decay with distance is independent of the pressure
(this was observed over pressures ranging from 5 x 1072 mm Hg to
10 mm Hg) in the frequency range from 2 to 8 kc. To establish
that the initial decay is not a result of a possible variation in
amplitude and phase over the surface of the transmitter, the
phenomenon was examined at various sections of the transmitter.
The results of these experiments show no variation in the detailed
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structure of the initial decay curve. Furthermore, we replaced
the electrostatic transmitter by a 5-inch plane piston radiator
(first resonance at about 15 kc) which was driven by an electro-
mechanical shaker., We compared the initial decay curves obtained
at various pressures and found them to be the same within the
accuracy of the measurements., The piston radiator was only used
in the lower frequency range (< 3 kc) due to its poor efficiency
at higher frequencies.

Using our theory, we are able to partially account for the be-
havior of the sound in this region. That the slope of the sound
pressure level curve 1is independent of pressure at small separa-
tions may be explained when one considers that for small separa-
tions, the attenuation and phase in the geometrical relaxation
regime resemble the corresponding parameters in the classical
regime. This resemblance is not only qualitative but also
quantitative (see Section VI). Since the attenuation and phase
define the transmission of sound and since we see no reason why
the presence of multiple reflections should alter this corres-
pondence, no transition region is to be expected as one proceeds
from the classical regime to the geometrical relaxation regime,

B. The Intermediate Region

In this region, commencing first at high<r frequencies (c.r.

Fig. 9), the multiple reflections fade and the response is pre-
dominately the response of a single reflection at each surface,
Figures 7 and 9 (which are representative figures) show that the
attenuation 1s relatively small in this region. However, it
increases somewhat with increasing separation. Comparison with
Fig. 3 indicates that this behavior i1s in agreement with theory.
The phase also assumes a behavior which 1s more commensurate with
the single reflection theory.

SoiE
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C. The Far Field Region

Ir. this region, (x > 2 cm) we can test the theory which we derived
above. The experimental results are plotted in Figs. 10 and 11.

As abscissa in these figures, we use the quantity R = (2/3:)(rc/r)§/
It 18 related to the gas pressure P, through rc, the mean frequency

of intermolecular collisions. A corresponding parameter can be

defined for the geometrical relaxation regime, R, = 2/3w cm/(xr)
= 4/(38). Then cm/k is the mean frequency of molecular-surface

collisions, Note that in the geometrical relaxation regime the

attenuation and phase are independent of the collision frequency
rc and hence of the ambient pressure,

Curves predicted by the classical Burnett theory and the values
predicted by aur theory (in the geometrical relaxation regime)

are also plotted. The computations are based on the diffuse
elastic process of molecular-surface interaction. There is an
excellent agreement between theory and experiment in the geometri-
cal relaxation regime. The experimental data which are analyzed
for values of the dimensionless separation parameter s = 5.22 and
3 = 10,44 seem to favor the diffuse elastic process of molecular-
surface interactions (see Fig. 3). However, more refined experi-
ments and analyses of the data would be required before a definite
conclusion on the type of surface interaction is justified.

The transition between the frequency relaxation regime and the
geometrical relaxation regime is of special interest., If one
accepted the Burnett theory as fairly representative of the situa-
tion in the classical, and in the frequency relaxation regime
(even in the range of pressures whare Aw/cm < 2) then one might
conclude (from Figs. 10 and 11) that the transition region from
the frequency relaxation regime to the geometrical relaxation
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regime extends over a pressure range of about half a decade., This
is particularly evident in Fig. 10 where this transition region
extends into the range of pressure for which the attenuation has
its maximum value. The experimental data here have values which
fall somewhere between the Purnett predictions and those from the
theory which applies to the geometrical relaxation regime (c.f.

Fig. 3).

The predictions of the present theory are based on the assumption
that the velocity distribution of the molecules subsequent to
their interaction with the surface is Maxwellian. We have not
ascertained the magnitude of the deviation from this distr.oution
that is required to significantly influence the results, however
there 1s consistency between this assumption and the experimental
data.
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X. SOUND PROPAGATION IN RAREFIED GASES -- WAVE CONCEPT

In this section a wave theory approach to the interpretation of
sound propagation in rarefied gas is briefly expanded. The pur-
pose of this analysis is to construct an alternative analysis to
the one of the particle concept that was given above. This 1is
brought out not only to reassess the results obtained by the
particle concept but also in the hope that some aspects of the
problem that cannot easily be interpreted in terms of the one
may be more readily interpreted by the other. In particular,

the phase reversal that occurs in the initial region is explained
more readily by the wave concept.

A, The General Idea

First consider only those molecules that have the same thermal
speed ¢ -(&i + 55 + ﬁi)l 2 and assume specular reflection.
Then the speeds before and after interaction with the vibrating
surface are equal (except for the small ac component), and the
molecules leaving a surface element are equally distributed over
all angles. The molecules which emerge from a surface element
have properties which are the same as that of a wave emanating
from a surface element. They have a given speed of propagation
and they are equally distributed over all angles. Therefore,
the additional average momentum that 1s given to the molecules
by a vibrating surface element can be considered as a wave
propagating out from this surface element.#*#* Thus by treating

» We impose an isotropic velocity distribution.

*e This is not the usual particle-wave analogy where the particle

itself 1is represented by a wave whose wavelength is given by
the total momentum of the particle. 1In our case, only the
additional momentum represents a wave,
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the molecules carrying conerent momentum from the surface by the
technique of wave propagation analysis one makes use of the
elements of classical acoustics to interpret sound propagation in
a rarefied atmosphere, There is also the convenience that the
angular distribution is averaged out initially.

B, Radiation from a Moving Surface

5till consideriny only molecules with the same thiermal speed c

tal.e the velccity of the movings surlace element dS to be u and
define a wave numter k = w/c (® = angular frequency of the driver).
The elemental sound nressure dn that is generated by the surface
element dS at a distance h is theni/

dp = -ipuw S}_g%&l as . (10.1)

(7 = density of tne pas.)

The result for the total vibrating surfice S is obtained by
integrating over dS5, To obtain the ictual sound pressure in a
rarefied pas all vilues of ¢ nust wve considered, This 15 ac-
complished by multinlying Eq. (10.1) by the distribution function
#(c) for the thermal speed ¢ iand interrating over de. Thus

i / W oxn{ild &
p = 'up\jo\.;'"—_ﬁéﬁ——l ?(c) deds . (10.2)

Flc) = =l (10.5)

a
Jrooc? 1
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Therefore
p = 4 u\/-‘ °2 exp[-(c/c )2]
Jr Yo o3 m

m

. {Jg :EEE.%%EI&EEI asf de . (10.4)

Thus for any configuration for which the radiation behavior (the
integral over S) is known the propagation properties can be found
by integrating over the speeds of propagation. This 1is especlally
useful if one wishes to calculate the sound propagation from a
complicated transmitter system in a rarefied gas. To apply

Eq. (10.4) one calculates the wave propagation from the geometry,
multiplies it by the velocity distribution function and integrates
over all possible values of c,.

o Rad.ation from an Infinite Disk

For radiation from an infinite disk the integration over S is
readily performed. The integral in the brackets ylelds the
expected plane wave, One obtains

1/\ 1%p g#g ikh 45 - pc exp ikx = pc exp(iwx/c) {10.5)
(- ]

in which x denotes the normal distances from
infinite disk to receiver.
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By inserting Eq. (10.5) into Eq. (10.4) one obtains for the pressure

p -J_L‘; upcm[ 3 e:n:p[-r'2 + i(s/r)) dr , (10.6)

where

r = c/cm and s = um/bm .

This is exactly Eq. (5.1) for specular reflection, (v = 1, ¥ = 2.)

Since p and c, are known, a measurement of u together with a known
solution of the integral (i.e., for s > 3) provides a method of
checking numerical constants in Eq. (10.6). Such a measurement,
if its accuracy is better than 1 db, would indicate whether
specular or diffuse reflection is dominant. This accuracy could
be attained only by refinement of the above experimental design.

D. Nonspecular Reflection from the Transmitter

The above calculations included only the case of specular reflec-
tion. Other reflection properties could also be considered by
using the "wave concept." However, to do this one would have to
know the radiation properties of materials with finite impedance
(how much sound is radiated from a vibrating and absorbing sur-
face?). Unfortunately, no complete solution of this problem is
available. We assume that impedance of a moving disk alters
mainly the amplitude of the radiated sound; other effects seem to
be less important. (This seems to hold for diffuse elastic and
diffuse inelastic reflections.) Thus, we continue to confine the
discussion to specular reflection only in using the wave concept.
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E. A Finite Microphone in Front of an Infinite Transmitter

(Sound Waves under Standard Conditions)

Consider the transmitter-microphone system depicted in Fig. 12.
The classical sound pressure Py as measured by the microphone
can be expressed by

l R) exp i1kx
Pg = WPc, (14 ?) E . (10.7)
l ~- R exp 21kx

(u = velocity of the transmitter, k = wave number, R = reflection
coefficient.)

Equation (10.7) is obtained by adding up all the reflected waves.
Note that for R <K 1, one obtains the usual plane wave solution.
R 1s a complicated function of x, d and A = %g , the wave length.
For the subsequent discussion we need only know its limiting
behavior. For x < d, R= 1; and for x »>> d, R —= 0. As

x varies from x << d to x »> d, one would expect a monotonic
transition between these two limiting values of R,

Consider the phase changes that occur when x is increased., For
kx << 1 and R = 1 we have approximately

Py = upco/-ikx -
Thus, the phase shift between u and Pg is 7,2, For R = 0 we have

Py = upc exp ikx .
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The phase shift is kx. 1If the transition from R = 1 to R = 0
occurs before kx = 7/2, there must be a minimum in the phase
shift as shown in Fig. 13. This phase transition 1s indeed
observed (see Fig. 8). Note that the point where R = 0 1is
reached depends primarily on the microphone size,

F. A Finite Microphone in Front of an Infinite Transmitter

in a Rarefied Gas

One obtains the sound propagation by multiplying Eq. (10.7)
by F(c) and integrating over c¢. This gives

L
p(s) = up = | & expl-(c/c,)?]
™0 Cm

. (1 +R) exp(iwx/c) ac . (10.8)
1 - R° exp(2iwx/c)

For R & 1 and ux << c, we can appiroximate this

p(s) = uplfi\/;ﬂ —nga; exp[-(c/bm)zl de , (10.9)
m
or
3 upci upe

p(S) = 3 TIox = T= (10.10)

Equation (10.10) differs from the corresponding sound wave solu-
tion only by a factor 9/5.
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a. An Attemrt to Explain the Measured Results

Calculated curves for limiting cases are presented in Fig. 14,
In order to normalize the data, the square of the sound pressure

at each separation is divided by uepzcﬁ . As before, s = wx/bm.

The decay from s = 1 to 8 = 8 1s calculated from
Ip(8)]2 = |p(s = 1)|2 exp {-2 ¢ B Ax}
Bo Yo

= |p(s = 1)]° exp {-0-“'¢575 (s - l)} (10.12)

by using the value a/Bo = 0,2 (c.f. Fig. 3). The plot of the
result of this calculation is labeled Eq. (10.12) in Fig. 14,

For the decay in the region s <K 1 we take R = 1 and use

Eq. (10.10). This calculation is represented by the portion

of the curve labeled Eq. (10.10). Between the calculated curves
Eq. (10.12) and Eq. (10.10) extrapolated transitions can be con-
strucved, The transition curves depend on the transition from
R=1 to R= 0, The two extreme cases of transition are depicted
in Fig. 14, that of a fast transition from R = 1 to R = 0 and
that of slow transition between these 1limits.

Figure 15 shows a comparison between the estimated and measured

values. The measured values were taken from Fig. 9. The results

favor a fast transition from R =1 at s <1 toR=0fcrs>1,
Y

Tne pressures at x = 0.05 cm are adjusted to be equal. Therefore,
u/W must be the same in both cases. This implies that in the 10 kc
case the amplitude of the transmitter is five times as high as

that of the 2 kc case, Thus, one would expect the 10 k¢ curve to
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be approximately 14 db higher than the 2 kc curve for s > 1,

i.e., when the initial decay region has been passed. The
difference between the two curves at x = 3 cm is 10 db, We add

to that 5 db. This represents the excess attenuation of the 10 kc
wave over the 2 kc wave in reaching the polnt x = 3 (s = 5,1),
Then the data agree.
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XI. REFLECTION OF SOUND FROM SOLID SURFACES

The results of experiments for both the amplitude and phase,
expecially at small separations, suggest the possibility of
observing reflection of sound from solid surfaces at low pres-
sures, Also recall that the experimental results favor the
conclusion that interaction of molecules with solid surfaces

is predominantly diffuse elastic. This 1s in agreement with

the finding of Stickneyéy'who used a molecular beam and a Rayleigh
disc to measure the momentum transfer between a gas and metallic
surface.

We set up an experiment to examine the reflection of sound di-
rectly, as shown in schematic form in Fig. 16. With this arrange-
ment there 1i1s no direct path between the transmitter and receiver.
The sound reaches the microphone primarily by reflection from the
test surface. The results obtained are snown in Fig. 17. The
records illustrate clearly that reflection of sound can be measured
in a rarefied gas. Moreover, the results in Fig. 17 show that
standing wave patterns of a sort occur also at low pressures,

The maxima and minima of the standing waves may be used, as they
are used at higher pressures, to determine reflection properties
(e.g., relative accommodation coefficients) of surfaces at reduced
pressures,

If one assumes that the distance between two minima is directly
proportional to c/w, c being the phase velocity of propagation,
then the results in Fig. 17 imply that the phase velocity of
sound increases with a decrease in pressure. This is in agree-
ment with the phase variation with pressure reported in Figs. 10
and 11.
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More refined techniques would be required to make the measurements
useful, However the results obtained thus far do give encourage-
ment that such an approach may be successful,
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XII. VARIATION OF SOUND PRESSURE LEVEL AS A FUNCTION OF PRESSURE

The results obtained for the variation of sound pressure level
as a function of separation (e.g., see Fig. 7) indicate that the
decay at small separation is independent of the pressure (in the
range of multiple reflections). To examine this phenomenon in
a more direct way, we measured the variation of the souna pres-
sure level as a function of pressure at a frequency of 6 k¢ and
a constant separation of 0.35 cm (s = 0,32).

The result of this experiment is shown in Fig. 18, A curve based
on a linear relationship is also plotted. The range of pressure
covered by this experiment extends from 6 mm Hg down to 1.4 x 10~
mm Hg. The pressures were measured by an ionization gauge from
1.4 x 10‘“ mm Hg to about 5 x 1073 mm Hg and with an alphatron
gauge in the range from 7 x 10~3 mm Hg to 6 mm Hg. Note that
slight discrepancies between theory and experiment occur at the
limit of the gauge range (for the ionization gauge the upper limit
is at 5 x 1073 mm Hg) or where a switch of scale takes place (the
alphatron scale has to be switched at intervals of a factor of
ten in pressure starting at 1072 mm Hg). These are the positions
where one may expect inaccuracies in the gauges to be most pro-
nounced., The break in the curve at about 10™2 mm Hg also shows
that the calibration of the two gauges differs by a small amount,
The transition region from the classical to the geometrical
relaxation regime occurs in the range of pressure of about 1.5 x
1072 mm Hg. Since the curve does not exhibit a changing slope,
our argument that no change would be expected in the range where

s is much smaller than unity is substantiated.
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XIII. EXPERIMENTS FOR THE MEASUREMENT OF SURFACE
ACCOMMODATION COEFFICIENTS

A. Outline of the Theory

A configuration useful for the study of surface reflections 1is
given in Fig. 19. S1 is the surface under study. 82 is a con-
trol surface used to define a source of coherent momentum fluctua-
tions and S3 1s a control surface used to define the coherent
part of the distribution function of those molecules reflected
from Sl'

A3 in the previous development, we ignore the source terms in

Eq. (1.1) and subject the homogeneous equation to boundary con-
ditions appropriate to the configuration under study. Then the
relationship between the distribution function at phase point

.fn’En at time t_ to the distribution functions at the phase point
‘mem at En in a region having no collisions may be described by a
propagator Tnm(fnéntnlfhémtm) as in Eq. (4.7). n denotes the trans-
mitting control surface and m the receiving control surface., However,
when stgdying surface interactions, one must give explicit consider:-
tion to the transformation caused by the surface itself. By denoting
the distribution function of those molecules striking surface S1 by

F-S and thcse leaving by F+S , one can indicate the surface trans-
1 1l

formation symbolically by

F = Mg (F (13.1)

) .
1 1 "S5

+S

It is to the determination of MS that we direct our efforts in
1

this section.
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The control surface 82 is essentially a source of '"test" molecules,
i.e. molecules having a coherent momentum fluctuation characterized
by the fluctuating velocity 0 . The control surface S3 is estab-
lished to assess the distribution function and/or velocity moments
of those molecules arriving from S1 which have retained this
coherent momentum. Thus it is necessary to express F_S , the dis-
tribution of molecules arriving at S3 in terms of F+S2 3via the

propagators T and the surface transformation M This relation-

Sl ¢

ship 1s expressed as follows:

F-s3(£'3’ €30 95 t3) -f f{d"} T13%,Ta1fss,

4 (22: §2: 9, t2) . (13.2)

dr}'representa the elemental variables of all initial and inter-
mediate phase points on the appropriate surfaces, As in Eq. (3.1)
F_g_ can be separated into a dominant incoherent part F° and a

coherent perturbation h. Thus,

-Fo

F -S

s +h(ry, §5, 0, t3) . (13.3)

3 3

We first determine whether measurements of h or of moments over h

can determine parameters which can be used to characcerize M, the

surface interaction operator,

It is convenient to express the operator M as a sum of three terms
M=Mg + My, + My, (13.4)
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Each term is related to one of the three processes of surface
interaction as discussed in Section IV.C., Expressing M in this
manner amounts to the assumption that the three processes,
specular, diffuse elastic, and diffuse inelastic reflections,

are linearly independent. Such an assumption may be valid pro-
vided one seeks to describe only the gross properties of the
molecular-surface interactions. Ms’ Mde and Mdi are the operators
describing the processes of specular, diffuse elastic and diffuse
inelastic interactions respectively.

Equatior (13.4) can be substituted in Eq. (13.2) to yleld a
decomposition of h, Eq. (13.3), into three parts:

h=hg +hy, +hy . (13.5)

de

The receiver is in general a momentum sensitive device and is
capable therefore only of measuring a linear combination of moments
of the distribution function. The suitability of an experiment to
determine surface interaction parameters is dependent on the manner

in which the properties of MS influence the velocity moments at
1
S3. The result is a function of 921 and 913 as evidenced by the

expression Eq. (13.2). Consider as a representative moment, the
momentum flux calculated from Eq. (13.5). Since each of the con-
tributing components of h is a different function ¢of angle, the
total momentum can be written

PS5~ Rs5 (Y215 ¥13) + Ryellge(%210%3) - &0,

Rs and Rde are the measures of the specular and diffuse elastic
reflection and are related to the momentum accommodation coefficient
of the two processes, Qs and Qde are in general complex functions
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of the sizes of surfaces S2 and Sl' The term involving the dif-
fuse inelastic reflection is missing in Eq. (13.6) since this
process destroys the coherent fluctuating momentum of the imping-
ing molecules,

Equation (13.6) 1s of exceptional complexity. It is therefore
necessary to introduce constraints related to specific experiments
so designed that their interpretation can be related to a simpli-
fied form of Eq. (13.6). Such simplification can be obtained if
the surfaces 82, Sl and S3 can be made small enough so that the
path of propagation from 82 to S3 can be specified to a good
approximation by 921 and 913 only. A schematic representation of
the experimental system is shown in Fig. 20a. For such a system,
Eq. (13.6) can be approximated

Ps, = [Rg5(%51,913) + Rygeos(¥y3)] (13.7)

Here 03(921,913) 1s a function such that it is equal to unit

6 = 6 6 - 0
when 0,, 13 and approaches zero rapidly as | 21 13|
increases. An approximate expression for this function can be
formally written

sin(6 - 9 ) 2n
o s 13

where n is a positive integer, 921 and 913 in Eq. (13.8) are
expressed in radians. In Eq. (13.7) we assume that diffraction
effects from the edges of surface S1 are negligible,
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By keeping both the distances and the source output constant,
measurements of Pg., a8 a function of the angle 913 should lead
to determination of such ratios as

S

Ps,(%13 = “12) RS cos(o),)
= + »
ps3W13 # 90) Rie = c0878,3)

(13.9)

from which the ratio RS/Rde can be ascertained. If a baffled
opening is used to replace the reflector surface, an arrangement
that 1s illustrated in Fig. 20b, the measured sound pressure at
Sé is proportional to
' (6! = € =
ps3( 13 = %12) © Ry + Rge + Ryy =1 . (13.10)

When the source strength and distances involved are maintained
equal in both experiments, an additional ratio can be obtained,

namely

Ps,!®13 = "12’

= Rdecos(913) q (13.11)

Hence, one should obtain the relative mangitudes of Rs, Rde and

Rdi‘ The baffled hole experiment can serve further as a check

that diffraction effects are indeed negligible., This 18 achieved
' (2] ' ' 2]

by measuring ps3(di3 ¥# 12) and ensuring that p83(913 ¥ 12)<<

pé3(9]'.3 = 912) .

“hs2
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B. Outline of the Experiment

The schematic arrangement given in Fig. 20 shows the experimental
setup: S, represents a 1,25-inch transmitter, s1 repregents a
l-inch circular aluminum disk, Si represents a l-inch hole in the
center of a 5-inch aluminum dbaffle and S3 represents a l-inch
microphone. The distances 121 and 113 are each 3-inches. S3 is
attached to a 3-inch long arm (113) that can be actuated externally
when the system is in the bell jar, The arm can be actuated to
move the microphone in a circular path in a plane containing the
centers of S,, S, (or Si) and 83 (or Sé) with S, as the center
point. The geometrical relationship between the various com-
ponents are thus not fine enough to make Eqs. (13.7) and (13.10)
applicable in an absolute sense, nevertheless we hoped that a
rough approximation could be achieved, However, the signal-to-
noise ratio was too low and no dependable results are reported.

To improve the signal-to-noise a more powerful transmitter was
designed and constructed., With the more powerful transmitter,

the signal-to-noise ratio is still too low. It appears that at
least 10 to 20 db higher signals are required in order to obtain
meaningful results., This is not possible with our existing tools.
We believe there is yet the possibility of carrying out such an
experiment successfully. Two suggestions follow:

1. Replace the source at S2 by a reasonably collimated and
powerful molecular beam and place a transmitter at Sl'
Equation (13.6) should then be modified to accommodate
the new arrangement. Such a modification can be derived
using the methods of Section IV.B,
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e.

Replace the source at 82 by a collimated and powerful
molecular beam that is chopped at a fixed frequency.
By the time the fluctuating disturbance reaches the
surface Sl’ the large amplitudes would have diminished
sufficiently to be considered small and the molecules
will have predominantly a fluctuating component of
momentum at the frequency of the chopper. Both the
collimation and the higher amplitudes that can be
obtained at Sl by this means should contribute more
than 20 db to the signal to noise ratic making the
experiment feasible,
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XIV. A KINETIC THEORY MODEL OF SOUND PROPAGATION

There is a close quantitative correspondence between the results
of Section VI which we obtained for the geometrical relaxation
regime and those which are obtained in the classical and frequency
relaxation regimes.i/'The point of departure is that in the lat-
ter regimes one must identify the variable s with the mean free
path, s -tnﬁ/qn, whereas in the geometrical relaxation regime it
is defined in terms of the normal distance from the transmitter to
the point of observation, Eq. {5.2). However, in both cases these
lengths represent the free flight path between collisions, Since
the dispersive properties of sound in the geometrical relaxation
regime are related to the free flight path, we infer from this
correspondence that dispersion in the other regimes can be related
to the free flight, We propose the following model. In the
classical and frequency relaxation regimes a coherent ensemble

of molecules travels an average distance of one mean free path
without collision. In a collision process a new ensemble of
molecules is statistically established to which the coherence is
communicated, This ensemble of molecules now becomes the carrier
of this portion of the sound field, Between collisions, the
motion is essentially in the geometrical relaxation regime and

is subjected to the loss of coherence typical of that regime,

In a subsequent collision process the residual coherence is once
more established in an ensemble of molecules which has a basically
similar molecular distribution to the preceding ensembles; and so
on, Thus, with the proper interpretation as to what constitutes
sound propagation in the classical and the frequency relaxation
regimes, a simple model can be constructed to account for the
dispersive properties of sound in these regimes,




Report No. 1169 Bolt Beranek and Newman Inc,

A simple way of constructing the model is to envision collision
control surfaces as depicted in Fig. 21. We characterize the
collision process and the subsequent emergence of a fluctuating
component of velocity by a function of velocity ¢(vx). At the
zeroth control surface the fluctuating component in the density
pertaining to those molecules that travel in the positive x-

direction is given by

by .fo' 8(v,) B(v,) dv, (14.1)

where F(vx) is the distribution function of molecular velocities
in the positive x-direction. In travelling one mean free path
from the zeroth to the first control surface, the corresponding
density fluctuation at the first control surface is given by

oy .j; o(v,) F(v ) exp(1ha/v ) av, . (14.2)

Proceeding in this manner, it can be readily shown that the den-
sity fluctuation at the Nth surface is given by

oy = Polp1/P 1N . (14.3)

The fluctuating component in the distribution function leaving
the Nth surface is given by

hy = [pl/pc,]N ¢(vy) F(v.) . (14.4)
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Denote the distance from the initial control surface where the
gound is generated to a control surface where the sound 1is
finally measured by x. Then

xeNA 4 Bx , (14.5)

where O0x/A < 1. Since the sound measuring device is a momentum
flux (pressure) assessor, the relationship between the sound
pressure at x = 0, p,, and x = N + 6x, p(x), is given by

p(x) = poley/o T (&) [ 7 0(u) 12 vy
. exp(ibxﬂybx) av, . (14.6)

If N is large, Eq. (14,6) can be readily approximated by
p(x) = polpl/pol("/ " . (14.7)

Thus in the frequency relaxation regime the pressure and the
density fluctuations obey essentially the same dispersive laws,
This 1is of course in sharp contrast to the geometrical relaxa-
tion regime where the density fluctuations and the pressure
fluctuations do not necessarily obey the same dispersive laws,

If, in an experiment, the planes perpendicular to the direction
of propagation where observations of the sound pressure are made
are separated such that Nél is large,

- X
Noy -2 M1y, , ~ (14.8)
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where Xy is the location defining the first plane and X5 the
second plane, then the attenuation and phase parameters are given

by
a - 18 =- % In(p)/P,) . (14.9)

Alternately if N21 < 1, the attenuation and phase parameters
are similar to those of the geometrical relaxation regime, namely,

®
[ otv, v Ry, Jexp(1axasv,) av,
@ -1p =322 ,»  (14,10)

m\/;' ¢(vx)v§F(vx)exp(1Axwyvx) dv,

where AX = Xy = Xg o Observe that the attenuation and phase
parameters in Eq. (14.10) are independent of the ambient pres-
sure,

For the transition region from Nél >> 1 to N21 < 1 the disper-
sion properties can be derived from Eq. (14.6); however, the
expressions in this case are more complex.

To calculate further one must explicitly know the function
¢(vx) . This function embodies the collision processes of
molecular-molecular interactions. In Section VI we showed that
the dispersive properties are not very sensitive to the details
of the dependence of the interactions on the velocity Voo and
consequently one would expect Eq. (14.9) to yield results that
are not very sensitive to the explicit dependence of ¢(Vi) on

Vo This proves to be true. For any finite polynomial function
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¢(v,), Eq. (14.9) yields attenuation and phase parameters that
show similar behavior to that of the corresponding geometrical
relaxation parameters depicted in Fig. 3, with A in place of x.
The experimental results support this conclusion, as is apparent
from the data of Figs. 3, 10 and 11,

Although there are theories which lead to dispersion laws for
normal gases and plasmas, it remains a point of continued dis-
cussion to obtain a physical description of the dispersive
properties uncovered by these formal theories. The procedure
that we have suggested above has the advantage that the physical
interpretation is present in the model, We emphasize the essential
distinction between a model of this type which is motivated by its
physical content and other models that have been used in this type
of problem which are motivated more by their solvability. The
conceptual basis is simply that the dispersive properties of

sound in gases is directly determined from an assessment of the
average amount of "free flight" that the molecules experience.
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FIG.19 REFLECTION OF SOUND. S, A TRANSMITTER
SURFACE, S, A REFLECTING SURFACE AND
S, A RECEIVER SURFACE
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FIG. 20 SCHEMATIC REPRESENTATION OF AN
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SURFACE INTERACTIONS
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